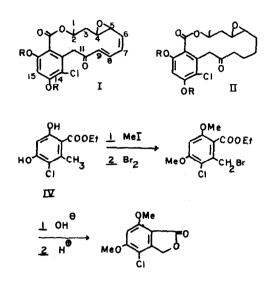
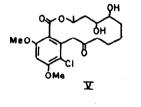
Tetrahedron Letters No.7, pp. 365-370, 1964. Pergamon Press Ltd. Printed in Great Britain.

THE CONSTITUTION OF RADICICOL

R.N. Mirrington, E. Ritchie, C.W. Shoppee, and W.C. Taylor Department of Organic Chemistry, University of Sydney Sydney, Australia,


> and S. Sternhell, Division of Coal Research, C.S.I.R.O., P.O., Box 175, Chatswood, N.S.Wales, Australia

(Received 24 December 1963)


Ether extracts of the culture filtrate of a strain of <u>Nectria radicicola</u> Gerlach et Nilsson (syn. <u>Cylindrocarpon</u> radicicola Wr.) (1) yield radicicol, a colourless crystalline phenol, m.p. 195°; $[\alpha]_D + 216^\circ$ (c, 1.0 in CHCl₃); \aleph_{max} 3300, 1655-1555cm⁻¹ (Nujol); λ_{max} 265 mµ, ε 17700 (neutral or acidic ethanol); λ_{max} 254, 274, 319 mµ, ε 22600, 22600, 15000 (alkaline ethanol). Analyses and molecular weights, which were determined mass spectrometrically, of radicicol and several derivatives establish the formula $C_{18}H_{17}O_6$ Cl. By chemical degradation and by spectroscopic methods the structure I (R=H) is deduced for radicicol.

Methylation of radicicol with methyl iodide-potassium carbonate gave the dimethyl ether I (R=Me), m.p. 186-187°; $[a]_D -58^\circ$ (c, 1.0 in CHCl₃):v max 1723 (aromatic ester), 1652cm⁻¹ (conjugated ketone), no hydroxyl absorption (Nujol); λ_{max} 279 mµ, ϵ 19200 (ethanol). Catalytic hydrogenation of radicicol yielded a tetrahydro-derivative II (R=H), m.p. 170-172°; $[a]_D -29^\circ$ (c, 1.0 in CHCl₃):v max 3150 (phenolic hydroxyl), 1705 (saturated ketone), 1660cm⁻¹ (H-bonded aromatic ester); λ_{max} 215, 265, 310 mµ, ϵ 25000, 7880, 4760 (neutral or acidic ethanol): λ_{max} 251, 320 mµ, ϵ 12450, 20000 (alkaline ethanol). When this neutral ultraviolet spectral curve was subtracted from that of radicicol, the resultant curve had λ_{max} 280 mµ, ϵ 12000,

365

ш

which is characteristic of the dienone system, -C=C-C=C-C=O.

Hydrogenation of I (R=Me) or methylation of II (R=H) afforded dimethyltetrahydroradicicol II (R=Me), m.p. 134-136°; $[\alpha]_D - 83^\circ$ (<u>c</u>, 1.0 in CHCl₃); γ_{max} 1718 (ester), shoulder at 1705cm⁻¹ (saturated ketone) (Nujol); λ_{max} 245 (inflexion), 292 mµ, ϵ 5300, 3980 (ethanol). Subtraction of this curve from that of I (R=CH₃) gave a curve with λ_{max} 278 mµ, ϵ 16800.

Acetylation of radicicol gave the diacetyl derivative I (R=Ac), m.p. 189-190°; ν_{max} 1785, 1773 (two phenolic acetates), 1732 (ester) 1662cm⁻¹ (conjugated ketone) (Nujol); λ_{max} 279 mµ., ϵ 15800; NMR¹, two singlets, intensity 3H each at 2.26, 2.35 ppm.

The above reactions and the spectral properties of the products show the presence in radicicol of two phenolic hydroxyl groups, a hydrogen-bonded carbonyl group (most likely ester) conjugated with an aromatic ring and an isolated dienone system.

Mild alkaline treatment of I (R=Me) gave 4-chloro-5,7dimethoxyphthalide (III) whose identity was proven by synthesis from the known ester (IV) (2) as shown.

The nature of five of the oxygen atoms of radicicol was thus accounted for; information that the sixth was linked in an epoxide was first obtained from the NMR spectra. Chemically, the presence of an epoxide was demonstrated by treatment of II (R=Me) with formic acid at room temperature to yield a glycol monoformate which was then hydrolysed to give the trans-diol (V), m.p. $250^{\circ}; v_{max}$ 3300 (two hydroxyl groups), $1710cm^{-1}$ (saturated ketone and aromatic ester) (Nujol); λ_{max} 249 (inflexion), 290 mµ, ε 7130, 3640 (ethanol). The diol could also be prepared directly from II (R=Me) by treatment with boron trifluoride in butanol. Periodate cleavage of the diol yielded crotonaldehyde by a β elimination. This result proved the relationship of the epoxide and the ester functions and the presence of a methyl group at C₂.

No,7

Finally, direct oxidation of II (R=Me) with chromic acid in acetic acid yielded adipic acid. Together with the other degradation products, this accounted for all of the carbon atoms of radicicol and established the structure of the latter as I (R=H).

The signals in the NMR spectra of radicicol and its derivatives were exceptionally well resolved for such complex molecules. The spectrum of I (R=CH₃) was interpreted as follows.

Singlet at 6.52 ppm (intensity 1 H): aromatic proton at C_{15} . This signal was also present in the spectrum of II (R=Me) (at 6.49 ppm) and of III (at 6.45 ppm).

Doublet at 6.08 ppm (intensity 1 H): H_9 , $J_{9,8}$ 16 c/s (<u>trans</u>); doublet of doublets at 7.48 ppm (intensity 1 H): H_8 , $J_{8,9}$ 16 c/s (<u>trans</u>), $J_{8,7}$ 9 c/s (vicinal, approximately planar configuration); doublet of doublets at 6.15 ppm (intensity 1 H); H_7 , $J_{7,8}$ 9 c/s, $J_{7,6}$ 10.5 c/s (<u>cis</u>); doublet of doublets at 5.66 ppm (intensity 1 H): H_6 , $J_{6,7}$ 10.5 c/s, $J_{6,5}$ 4.5 c/s. An additional long-range coupling (3) between H_7 and H_5 (J approximately 1 c/s) was also observable. The spectrum of II (R=Me) showed no resonances in the region between 6.5 and 5.3 ppm. *

AE quartet near 4.1 ppm and partially superimposed on methoxyl signals (vide infra) (intensity 2H): methylene protons at C_{11} . In radicicol I (R=H) the corresponding signals are H_A 3.97 ppm, H_B 4.81 ppm, J_{AB} 16 c/s (geminal coupling). In diacetyl radicicol I (R=Ac) H_A 3.91 ppm, H_B 4.13 ppm, J_{AB} 16.5 c/s. In tetrahydro-dimethylradicicol II (R=Me) H_A 3.92 ppm, H_B 4.10 ppm, J_{AB} 18 c/s.

Two singlets at 3.8 and 3.9 ppm (total intensity 6H): methoxyl groups. These signals are absent in the spectra of I (R=H) and I (R=Ac) but occur (at almost identical frequency) in the spectrum of II (R=Me).

Doublet at 1.52 ppm (intensity 3 H): C_1 methyl, $J_{1,2}$ 6.5 c/s. This signal is also present in the spectra of I (R=H), I (R=Ac) and II (R=Me) at elmost identical frequencies.

368

NMR spectra were recorded on a Varian A-60 spectrometer for solutions in deuteriochloroform. Chemical shifts are in ppm from tetramethylsilane as internal reference. Coupling constants are derived from first order considerations only.

Symmetrical multiplet at 5.35 ppm (intensity 1 H): H_2 , split into a quartet (J 6.5 c/s) by C_1 methyl and into doublets (J approximately 3.5 and 4 c/s respectively) by the methylene protons at C_3 (vicinal, gauche coupling). This signal is also seen, with the same multiplicity, in the spectra of II (R=Me) at 5.18 ppm, of I (R=H) at 5.57 ppm and of I (R=Ac) at 5.40 ppm.

Multiplet of half-height width of 8 c/s at 3.45 ppm (intensity 1 H): H₅. Doublet of approximate triplets at 3.06 ppm (intensity 1 H): H₄, J_{doublet} 9 c/s, due to interaction with one of the methylene protons at C₃ (vicinal, <u>trans</u> coupling), J_{triplet} 3 c/s due to approximately equal interactions with the other methylene proton at C₃ (vicinal, gauche coupling) and with H₅ (<u>trans</u> coupling in an epoxide ring) (4,5). Signals assigned to H₄ and H₅ also occur at almost identical frequencies and the same multiplicities in the spectra of I (R=H) and I (R=Ac). In the spectrum of II (R=Me) no resonances can be seen between the group near 4 ppm (8 protons, methoxyls and methylene at C₁₁) and 3.0 ppm indicating that H₅ is allylic and hence is shifted upfield on hydrogenation of I (R=Me).

Doublet of approximate triplets at 2.4 ppm (intensity 1 H): one of the methylene protons at C_3 , $J_{doublet}$ 15 c/s (geminal coupling to the other methylene proton), $J_{triplet}$ 3.5 c/s due to approximately equal coupling to H_4 and H_2 (vicinal, gauche coupling)

Multiplet near 1.7 ppm (intensity approximately 0.5 H): the other methylene proton at C_3 . Four lines are resolved (spacings of 8.5 and 4 c/s), the remainder is overlapped by the signal due to methyl at C_1 . The discernable splittings are assigned to a vicinal gauche interaction with H_2 (J 4 c/s) and a vicinal <u>trans</u> interaction with H_4 (J 8.5 c/s). The geminal coupling (presumably 15 c/s) to the second methylene proton at C_3 (signal at 2.4 ppm, see above) is most likely responsible for the part of the multiplet under the methyl resonance.

Spin decoupling experiments, performed by L.F. Johnson of Varian Associates, Falo Alto, have confirmed the coupling of H_2 with methylene proton at C_3 which gives rise to the resonance at 2.4 ppm, of H_5 with H_6 and of H_4 with the methylene proton at C_3 resonating at 1.7 ppm.

Biogenetically, radicicol appears to be derived in an unexceptionable manner from acetate units.

After this work had been completed it was learnt (during a social visit by one of us to the University of British Columbia) that structure I (R=H) had also been assigned by A.I. Scott and N.S. Bhacca (following paper) to the substance "monorden". This was first isolated from the culture filtrates of <u>Monosporium</u> <u>bonorden</u> by Delmotte and Delmotte-Plaquee (6), who assigned to it the formula $C_{17}H_{16}O_7$, with m.p. 193.5°, $[a]_D^{20}$ +203 (in CHCl₃). Comparison of "radicicol" with "monorden" established their identity.

<u>Acknowledgements</u>. The authors thank the University of Sydney for the award of a scholarship to one of them (R.N.M.); Professor N. White and Mr. G. Evans, Faculty of Agriculture, University of Sydney, for the culture filtrates; Dr. J.S. Shannon, Division of Coal Research, C.S.I.R.O. for mass spectrometric results, and L.F. Johnson of Varian Associates, for spin decoupling experiments.

REFERENCES

- (1) Gerlach, W., and Nilsson, L. Phytopath. Zeit., 1963, 48, 251.
- (2) Fujikawa, F., Hitosa, Y., and Inoue, M., <u>J. Pharm. Soc</u>. <u>Japan</u>, 1954, <u>74</u>, 1122.
- (3) Collins, D.J., Hobbs, J.J., and Sternhell, S., <u>Tetrahedron</u> <u>Letters</u>, 1963, 197.
- (4) Musher, J.I., and Gordon, R.G., J. Chem. Phys., 1962, 36, 3097.
- (5) Reilly, C.A., and Swalen, J.D., <u>J. Chem. Phys</u>., 1961, <u>34</u>, 980, <u>35</u>, 1522.
- (6) Delmotte, P., and Delmotte-Plaquee, J., <u>Nature</u>., 1953, <u>171</u>, 344.